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Abstract—Worker selection is always one of the most fun-
damental problems in Mobile Crowdsensing (MCS), since the
reliability of workers’ sensing data is hugely significant to the
service quality. In the worker selection process, it is inevitable
for the workers to share some of their sensitive information.
Consequently, numerous studies are conducted on the problem of
privacy-preserving worker selection in MCS platforms. However,
most of the existing methods focus on static and short-term
situations. As a result, they are inapplicable to the highly dynamic
environments where the MCS tasks are long-term and the
workers can continuously arrive at/leave the system. To solve
these problems, in this paper, we propose a privacy-preserving
worker selection scheme based on the probabilistic skyline over
sliding windows. Specifically, the proposed scheme can select
reliable workers for each current sliding window in terms of
working experience, expiry time, and trustability. Besides, we
design an ElGamal encryption-based scheme for securely out-
sourcing and comparing workers’ personal information without
revealing their privacy. Detailed security analysis shows that
the workers’ sensitive information, e.g., working experience and
trustability, are not revealed to any authorized parties during
the process of MCS under our security model. Furthermore,
extensive experiments on both real-world and simulated datasets
demonstrate that our proposed scheme outperforms the baseline
method in two application scenarios, i.e., i) continuous worker
arrival and ii) continuous worker departure.

Index Terms—Mobile crowdsensing (MCS), continuous worker
selection, probabilistic skyline, ElGamal encryption

I. INTRODUCTION

TTH explosion in the availability of smart devices brings
a new paradigm of sensing network, called Mobile

Crowdsensing (MCS), which has recently spurred lots of
interests in both industries and academia [1]–[3]. By exploiting
sensors embedded in mobile devices, MCS can be used in
a large variety of real-world applications, such as location
recommendation [4], air quality monitoring [5], traffic in-
formation sharing [6], and point-of-interest characterization
[7]. As a representative example, WAZE is a GPS navigation
software owned by Google, which can provide real-time
services like traffic monitoring and route recommendation with
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users’ smartphones and tablets [8]. With the pervasive sensor-
embedded smart devices, the MCS platform can leverage
large-scale and long-term crowdsensing services, which can
hardly be finished by traditional sensing systems [9], [10].

In a typical MCS application, a crowd of mobile partici-
pants, namely workers, are selected by the service provider to
collect and outsource their real-time sensing data. Evidently,
worker selection is one of the most fundamental problems in
MCS, and competent workers can significantly improve the
quality and reliability of the sensing tasks. However, to achieve
a satisfactory result for worker selection, it is inevitable for
the participating workers to share some of their sensitive
information, e.g., trustability, working experience, real-time
location. In particular, a hostile MCS platform may exploit
workers’ trustability for unfair competition [11]; an attacker
may infer workers’ daily behaviors by analyzing their working
experience of different MCS tasks. As a result, workers may
be reluctant to take part in the MCS tasks due to the potential
privacy disclosure [12]. To stimulate workers’ interests and
enthusiasm, an ideal MCS platform should protect workers’
sensitive information while selecting proper workers efficiently
and effectively.

Recently, numerous studies focused on privacy-preserving
worker selection in MCS applications [6], [9]–[13]. However,
instead of considering the dynamic situations, most of the
studies treat MCS as a short-term and static process. In
many real-world problems, a sensing task is required to be
executed continuously over a long-time period. For example,
a traffic monitoring platform may observe and detect car
speeds for weeks; an environment evaluation system may
keep track of the local air quality for months. Unlike a
static system, such sensing problems need to select proper
workers repeatedly in a long-term manner. Moreover, since
the workers can continuously arrive at/leave the system, the
stream of sensing data is always time-sensitive. The platform
is generally more interested in the recent data than those in the
far past. Nevertheless, most of the studies only take workers’
non-temporal characteristics (e.g., asking price and real-time
location) into account. The recency and time-sensitivity of the
mobile workers have not been adequately studied in the past.

Aiming to address the issues above, we propose an efficient
and privacy-preserving worker selection scheme for MCS
applications. More specifically, a probabilistic skyline based
approach is proposed for continuously selecting workers over
sliding windows. Furthermore, an ElGamal encryption-based
scheme is designed for securely outsourcing and comparing
workers’ sensitive information. Overall, the main contributions
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of this work are three-fold as follows.
• First, we devote our attention to the problem of privacy-

preserving and continuous worker selection in MCS services.
By deploying probabilistic skyline queries over sliding win-
dows, our approach can select qualified workers for each
current window in terms of working experience, expiry time,
and trustability. The MCS system can be kept reliable and
sustainable in different application scenarios.
• Second, we design novel encryption schemes for securely

outsourcing and comparing workers’ sensitive attributes (i.e.,
working experience and trustability) without disclosing their
real values. These schemes are later used for confidentially
determining workers’ skyline dominance relationships and
calculating workers’ probabilistic skyline values in worker
selection.
• Third, we analyze the security of the proposed scheme and

show that it can effectively preserve the privacy of workers’
personal data. Besides, extensive performance evaluations are
conducted on both real-world and simulated datasets, and the
results demonstrate that our approach outperforms the baseline
method in different application scenarios.

The remainder of this paper is organized as follows. In
Section II, we introduce our system model, security model and
design goals. In Section III, we describe some preliminaries. In
Section IV, we present the proposed scheme in details. Then in
Section V and Section VI, we respectively present the security
analysis and performance evaluation, followed by the related
works in Section VII. Finally, we recap the conclusions in
Section VIII.

II. MODELS AND DESIGN GOALS

In this section, we formalize our system model, security
model, and identify our design goals.

Service Provider Cloud Servers

S1 S2

Processing 
Keys

Timeline

...

t1 t2 t3 t4 tN

Workers

...

A long-term MCS taskRegistration

Fig. 1. The overview of the system model

A. System Model

In our system model, a long-term MCS task is denoted
as M, where workers can continuously arrive at/leave the
MCS system. More specifically, we design an MCS worker
selection scheme based on continuous probabilistic skyline
computation. Our system model consists of four entities,
namely a service provider SP , two cloud servers (S1,S2),
and a set of participating workers W = {w1, w2, · · · }.

• Service Provider (SP): SP is the service organizer and
provider, and is responsible for bootstrapping the entire sys-
tem. SP generates and distributes proper keys to different
authorized entities so that a certain task can be completed
cooperatively. Besides, SP assigns and computes a trustability
score Ti to every registered worker wi, which should be
securely outsourced to S1 and S2 before a sensing task starts.
After the task finishes, SP updates workers’ Ti based on their
sensing performance by the method in [9]. We assume that all
parties fully trust SP in the system.
• Cloud Servers (S1,S2): There are two cloud servers in

our system model. After M starts, S1 and S2 will work
together to select reliable workers over sliding windows.
Concretely, when a new worker arrives, S1 and S2 need to
update the subset of suitable workers for the current window
based on their probabilistic skyline values.
•Workers W = {w1, w2, · · · }: Workers are the participants

who wish to conduct M. In our system model, each worker
wi is associated with a trustable score Ti ∈ (0, 1), which can
be considered as the trustable level of wi. Higher Ti means
wi is more reliable for collecting and sharing high-quality
sensing data. Once wi plans to conductM, she/he is required
to submit some real-time information to the cloud servers,
e.g., arrival time tarri , the life span of the sensing data tlsi , and
working experience Ei. wi’s expiry time texpi can be calculated
as texpi = tarri + tlsi . After that, the cloud servers can select
the suitable workers based on these information. In this work,
Ei is defined as an integer within certain range (e.g., [1, 30])
to reveal how often wi is allocated to conduct similar tasks in
the past and the larger value is more preferred.

B. Security Model

In our security model, we consider SP is trustable, while
S1 and S2 are honest-but-curious, which means both of them
strictly follow the protocol procedure, yet may be curious to
learn additional personal information in the process of worker
selection. In addition, there is no collusion between S1 and
S2. For the workers, we assume that they are strategic and
selfish for maximizing their profits. Specifically, our model
selects workers in terms of working experience, expiry time,
and trustability. Therefore, if a worker wi provides dishonest
personal information (e.g., a larger Ei or tlsi ), she/he may have
a higher probability to be selected. However, wi’ trustability
Ti will be evaluated and updated based on his/her sensing
performance after each task finishes [9]. So the value of Ti
will be decreased largely if wi submits false information, and
the sensing results do not match the provided information.

Moreover, each worker ID can only be registered once,
so malicious attackers cannot participate in M with multiple
IDs. As a result, for long-term considerations, in order to be
selected again in the future, the workers need to provide their
personal information as correct as possible. It is worth noting
that there may exist outside attackers who want to exploit the
vulnerability of the platform and try to monitor and modify
the sensing data, but they are beyond the scope of this work,
and will be discussed in our future work.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 14:40:57 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3059637, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 16, NO. 8, AUGUST 2015 3

TABLE I
THE SUMMARY OF NOTATIONS

Notation Definition
System Notations
SP Service provider
(S1,S2) Two cloud severs
M A long-term MCS Task

Worker Notations
W = {w1, w2, · · · } A set of registered workers
Wc = {w1, · · · , wwin} The Nwin workers in current window
wi The ith worker
Ni # of workers who do not dominate wi

Ti Trustability of worker wi

T i 1− Ti

tarri Arrival time of wi

tlsi Life span of wi’s sensing data
texpi Expiry time of wi’s sensing data
Prsky(wi) Probabilistic skyline of worker wi

Worker Selection Notations
Nwin The size of each sliding window
SE Sum of probabilistic work experience
trexpi Relative departure time of wi

Sr
E SE − Ei when wi leaves the system

C. Design Goals

This work aims to securely select a subset of reliable and
trustable workers over sliding windows for conducting the
MCS tasks. Specifically, the following two objectives should
be satisfied.
• Privacy preservation: Our study needs to consider the

leakage of workers’ privacy since lots of sensitive information
can be involved and inferred in the designed model. For
example, a worker wi’s working experience Ei may indicate
his/her daily routine and behavior, which should be highly
protected. Moreover, wi’s trustability Ti can be used by MCS
opponents for unfair competition. So, neither S1 nor S2 can
get access to the real values of Ei and Ti during the process
of worker selection.
• Efficiency: In order to preserve workers’ privacy, certain

secure comparison protocols should be designed for con-
tinuous skyline computation. Processing the encrypted data
between cloud servers will bring extra computational cost,
which should be minimized in our proposed scheme. More
specifically, numerous sensing data can speedily arrive in our
system model. In order to find the most qualified workers for
executing the MCS task in a real-time fashion, the worker
selection scheme should be performed efficiently without
considering network delays.

III. PRELIMINARIES

In this section, we briefly introduce the background about
probabilistic skyline computation over sliding windows. The
frequently used notations are listed in Table I.

A. Skyline

Skyline computation is a well-known approach for multi-
dimensional decision analysis [14] [15]. Given a dataset D =
{γ1, γ2, γ3, ..., γD} that contains D objects. Each object is in
d dimensional space, where γi = (γ[1], γ[2], γ[3], ..., γ[d]) for
i ∈ [1, D]. For simiplicity, we assume for each dimension,

larger values are more preferred. Let γa and γb denote two
different objects in D where a, b ∈ [1, D] and a 6= b. We
define γa dominates γb, denoted as γa ≺ γb, if for all k ∈
[1, d], γa[k] ≥ γb[k], and there exists at least one k such that
γa[k] > γb[k]. The skyline points of D are all the objects
that are not dominated by others in D. If γa ⊀ γb, it means
either γb ≺ γa or they do not dominate each other. Notably,
γa ⊀ γa (i.e., γa does not dominate itself) because we have
γa[k] = γa[k] for k ∈ [1, d].

B. Probabilistic Skyline over Sliding Windows

Probabilistic skyline can compute the likelihood that one
object to be selected as the skyline points [16] [17]. However,
in many real-time monitoring platforms, objects appear se-
quentially. The arrival time and active time-span of the objects
are essential aspects for deciding the dominance relationship
between different objects. [18] studied the problem of operat-
ing probabilistic skyline over sliding windows, which can be
described as follows.

LetWc = {w1, w2, ..., wNwin} denotes the subset of current
Nwin workers. Each worker wi is associated with a trustability
score Ti ∈ (0, 1) for i ∈ [1, Nwin]. In addition, we define
T i = 1 − Ti as the complement of workers’ trustability and
T i ∈ (0, 1) as well. According to [18], we use Pr(wi) to
denote the probability that wi is not dominated by any other
workers in Wc, so Pr(wi) can be calculated as:

Pr(wi) =
∏

wk∈Wc,
i6=k,wk≺wi

(1− Tk) · 1Ni =
∏

wk∈Wc,
i6=k,wk≺wi

T k · 1Ni . (1)

Let Wc/i denote the set of workers in Wc (not include wi)
who do not dominate wi, i.e., Wc/i = {wk|wk ∈ Wc, wk ≺
wi, k 6= i}. In Eq. (1), Ni is the cardinality of Wc/i, i.e.,
Ni = |Wc/i|.

Let Prsky(wi) denote wi’s probabilistic skyline value that
indicates the possibility that wi appears in the skyline of Wc.
Prsky(wi) is calculated based on workers’ trustability, which
is shown in the following equation

Prsky(wi) = Ti · Pr(wi) = Ti ·
∏

wk∈Wc,
i6=k,wk≺wi

T k · 1Ni . (2)

To better present how probabilistic skyline over sliding
windows can be used for worker selection, a motivating
example is given as follows.

Example 1: A city government plans to recruit numbers
of workers to monitor local air quality for one month. The
skyline computation depends on worker’s working experience
and the expiry time of their sensing data. In addition, each
worker is associated with a trustable score which is derived
from historical reporting records, and can be used to indicate
the trustability of this worker. Due to the large-scale and
fast arrival of the sensing data, the platform needs to select
workers efficiently over sliding windows. For simplicity, we
assume that the platform only focuses on the most 5 recent
sensing data points. In Table II, each worker wi’ personal
information is listed for i ∈ [1, 6], including worker IDi,
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TABLE II
AN EXAMPLE OF AIR QUALITY MOINTORING SYSTEM

ID tarr tls texp E T T
w1 9:01 am 11 min 9:12 am 21 0.8500 0.1500
w2 9:02 am 15 min 9:17 am 15 0.8500 0.1500
w3 9:03 am 10 min 9:13 am 14 0.9500 0.0500
w4 9:05 am 12 min 9:17 am 26 0.5500 0.4500
w5 9:08 am 10 min 9:18 am 27 0.4500 0.5500
w6 9:11 am 16 min 9:27 am 18 0.6000 0.4000

arrival time tarri , the life span of the sensing data tlsi , the
expiry time of the sensing data texpi (i.e., texpi = tarri + tlsi ),
working experience Ei, trustability Ti and the complement of
trustability T i. Specifically, at time 9:10 am, w1 to w5 are
the qualified candidates, since they are the only and most
5 recent workers, and none of their sensing data expires.
However, when w6 arrives at 9:11 am, this platform needs
to decide which 5 workers can be kept in the system among
the 6 candidates. Here, probabilistic skyline is computed
based on Eq. (2) and is used to rank the qualification of
workers. For instance, if we want to compute Prsky(w3),
we first know that w3 is dominated by w2, w4, w5 and w6

(see in Fig. 2), then Pr(w3) = (1 − T2) · (1 − T4) · (1 −
T5) · (1 − T6) = T 2 · T 4 · T 5 · T 6 = 0.0149, and finally
Prsky(w3) = T3·Pr(w3) = 0.9500∗0.0149 = 0.0141. After we
computing all workers’ probabilistic skyline values, the worker
with the minimum value will be removed from the system, while
the rest of the workers will be kept for conducting M.

From this example, we can see that probabilistic skyline
computation over sliding windows is a practical and useful
approach for worker selection. It can consider the trade-off
between multiple criteria (e.g., working experience, recency
of the sensing data, longer sojourn time) and discount the
dominating criteria with too low trustability. Therefore, the
workers with higher probabilistic skyline values are more
reliable and trustable for fulfilling the task.
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Fig. 2. The illustration of the example in Table II of calculating probabilistic
skyline over sliding window based on working experience and life span

IV. THE PROPOSED SCHEME

In this section, we present the probabilistic skyline based
scheme for continuous and secure worker selection in MCS ap-
plications. The proposed scheme mainly consists of the follow-

ing five phases, namely, System Preparation (SysPre), Out-
sourcing Workers’ Information (OutInf), Comparing Work-
ers’ Working Experience (CmpExp), Comparing Workers’
Probabilistic Skyline Values (CmpSky), and Worker Selec-
tion (WrkSel). First, in SysPre phase, SP performs some
preparations for the sensing task M, including registering
and authenticating workers, generating and distributing proper
keys to the correct entities, outsourcing workers’ trustability
to the cloud servers, and releasing the details of the sensing
task M to both (S1,S2) and W . Once a registered worker
wi wants to participate in M, he/she needs to outsource
his/her working experience Ti, arrival time tarri , and the life
span of the sensing data tlsi to the cloud servers in OutInf
phase. Upon receiving workers’ information, the cloud servers
needs to compare the relation of their working experience and
determine their skyline dominance relationship in CompExp
phase. Consequently, the cloud servers can compare workers’
probabilistic skyline values in CmpSky phase and finally select
the suitable workers for conducting the sensing task M in
WrkSel phase. The details of the five phases are introduced
as follows.

A. The SysPre Phase

In this phase, SP will run the following procedures for
preparing and initializing the system before the sensing task
M starts.
• Registration: Once a worker wi with identity IDi wants

to register him/herself to the system, SP first validates the
authenticity of IDi and check whether this IDi has been
previously registered or not. If the IDi is authentic and valid
(i.e., it has not been resigstered before), then SP uses a
cryptographic hash function to compute a pseudo-id PIDi

based on IDi [19]. Moreover, wi’s trustability Ti is initialized
as 0.5. For S1 and S2, SP needs to authenticate their identities
as well before M starts. Once wi starts sensing the data, the
pseudo-id PIDi needs to be authenticated again to guarantee
that only registered workers can participate in M. After M
finishes, SP updates each Ti in an offline manner based on
worker wi’s sensing performance [9]. The updated Ti will be
used for worker selection in the next sensing task.
• Key Generation and Distribution: SP generates a key

pair (pks1 , sks1) = ((p, q, g, y), x) of ElGamal encryption.
Specifically, p and q are large primes and q|(p − 1). Let
Z∗p = {1, 2, ..., p − 1}, and Z∗q = {1, 2, ..., q − 1}, g is a
generator of a subgroup with order q in Z∗p, y = gx mod p
where x is a random number from Z∗q . Moreover, SP selects
another generator g̃ such that g̃ 6= g, and creates a bloom
filter BF based on Algorithm 1. After that, pks1 is published
as system parameter to all the entities, and SP securely sends
(sks1 , BF ) and g̃ to S1 and W , respectively.
• Outsourcing Workers’ Trustability to S1 and S2: As we

mentioned before, each worker wi’s Ti and T i are owned by
SP , and both are essential for worker selection. In this work,
we design a privacy-preserving scheme based on ElGamal
encryption, which enables SP to securely outsource Ti and
T i to the cloud servers. The details of the proposed scheme
are described as follows.
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Algorithm 1: Generation of a bloom filter
Input : A N -bit length array A[N ] where all the bits are initialized

to 0, k independent hash functions H = {H1, H2, ..., Hk}
where Hn : {0, 1}∗ → {0, 1, ..., N − 1} for n ∈ [1, k],
and Emax which indicates the maximum value of working
experience (e.g., Emax = 30).

Output: The bloom filter BF that contains all the elements of
o = g̃i−j mod p for i, j ∈ [1, Emax] and i > j

1 for i = 1 to Emax do
2 for j = 1 to Emax do
3 if i > j then
4 o = g̃(i−j) mod p
5 for l = 1 to k do
6 set A[Hl(o)] = 1

7 return The bloom filter BF

Step 1. Ti and T i are both in the range of (0, 1) where the
modulo operations can not be adopted (e.g., Ti = 0.6755, and
T i = 0.3245). So at the beginning, SP multiplies both Ti and
T i by a large integer θ (e.g., θ = 104). After that, we can
get Ti = Ti · θ = 6755 and T i = T i · θ = 3245, such that
the modulo operations can be applied in the further steps. It is
worth noting that after expansion, Ti + T i = 104 rather than
1. So the Eq. (2) will be modified as:

Prsky(wi) = Ti · Pr(wi) = Ti ·
∏

wk∈Wc,
i6=k,wk≺wi

T k · 104Ni . (3)

Step 2. SP selects two random numbers ri, r̃i ∈ Zq , and
then encrypts Ti and T i as follows:

T ′i1 = Ti · yri mod p, and T ′i2 = gri mod p

T
′
i1 = T i · yr̃i mod p, and T

′
i2 = gr̃i mod p

(4)

Step 3. SP securely distributes (T ′i1, T
′
i1) and (T ′i2, T

′
i2) to

S2 and S1, respectively.
• Launching the Sensing Task M: After outsourcing work-

ers’ trustability, SP releases the detailed information of M
to S1,S2, and W , e.g., the task content, location, and start-
ing/ending time. Moreover, we assume that only a small
number of workers are useful and can be kept in each sliding
window. So, SP defines Nwin as the size of each sliding
window and announces Nwin to S1 and S2 as well. In WrkSel
phase, at most Nwin workers can be selected to fulfill M in
each window. Usually, Nwin is a small integer (e.g., 5 or 10),
which can be determined based on previous task experience.

B. The OutInf Phase

After M starts, any worker wi who wants to participate in
M needs to send his/her working experience Ei, arrival time
tarri , life span of the sensing data tlsi to the cloud servers.
As mentioned before, Ei is sensitive and should be protected
from being disclosed. The following details describe how wi

outsources Ei, tarri , and tlsi to S1 and S2.
Step 1. At first, wi generates a random number r̄i ∈ Zq ,

and computes E ′i1 and E ′i2 as follows:

E ′i1 = g̃Ei · yr̄i mod p, and E ′i2 = gr̄i mod p (5)

Step 2. Then, wi calculates expiry time texpi by texpi =
tarri + tlsi , where tarri indicates his/her arrival time, and tlsi
indicates the how long he/she plans to stay in the system.

Step 3. Finally, wi securely distributes (E ′i1, texpi ) and E ′i2
to S2 and S1, respectively.

C. The CmpExp Phase

In this phase, for wi and wj , S2 and S1 need to compare
the relation of their working experience and determine their
skyline dominance relationship.
• Comparing workers’ working experience: Both Ei and Ej

are sensitive information and should be protected from being
disclosed. The following steps are conducted by S1 and S2

for comparing Ei and Ej without revealing their real values.
Step 1. Given E ′i1 and E ′j1 respectively from wi and wj , S2

calculates C1 by Eq. (6) and then sends C1 to S1.

C1 =
E ′i1
E ′j1

=
g̃Ei · yr̄i
g̃Ej · yr̄j

= g̃(Ei−Ej) · y(r̄i−r̄j) mod p (6)

Step 2. Upon receiving C1, S1 calculates C2 as follows:

C2 =
C1 · E ′xj2

E ′xi2
=
g̃(Ei−Ej) · y(r̄i−r̄j)

y(r̄i−r̄j)
= g̃(Ei−Ej) mod p (7)

Step 3. After obtaining C2, S1 can determine the relation
between Ei and Ej as follows: If C2 = 1, then Ei = Ej .
Otherwise, S1 needs to check whether C2 is in the BF or
not: if yes, then Ei > Ej , if no, then Ei < Ej . After that, S1

securely sends the comparison result to S2.
The correctness of Step 3 is as follows. If C2 = 1, it is

easy to have Ei − Ej = 0 and Ei = Ej . Otherwise, under the
condition of Ei > Ej , we know that all the possible values of
C2 have already been added into the BF based on Algorithm
1. Therefore, by checking whether C2 is in BF or not, S1 can
easily know whether Ei > Ej or Ei < Ej . Notably, since g̃ is
only securely shared to W in the SysPre phase, S1 can only
determine the relation between Ei and Ej . Without knowing
g̃, S1 has no idea on the real values of Ei and Ej .
• Comparing workers’ skyline dominance relationship: The

skyline dominance relationship between each pair of workers
is captured in terms of working experience and expiry time,
where for these two attributes, the larger values are more
preferred. Specifically for workers wi and wj , i) S1 can
securely compare the relation between Ei and Ej and send the
relation to S2, and ii) texpi and texpj can be readily compared
by S2 in their plaintexts. Therefore, the skyline dominance
relationship between wi and wj can be easily determined by
S2 (see in Algorithm 2).

D. The CmpSky Phase

In this phase, S1 and S2 can compare the relation between
Prsky(wi) and Prsky(wj) for wi and wj . During the compari-
son, their trustability should not be disclosed to other entities.

Let Prskymax denote the possible largest value for Prsky(wi).
Given Ti, T k ∈ (0, 104), Prskymax = 104 ·

∏Nwin

1 104 =
104(Nwin+1), where Nwin is the window size. In our system
model, the largest value for Nwin is 20, then Prskymax = 1084
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Algorithm 2: Workers’ skyline dominance relationship
comparison WorkerDom(wi, wj)

Input : texpi , texpj , BF,C2

Output: The skyline dominance relationship between wi and wj

1 if C2 in BF then
2 if texpi ≥ texpj then return wi ≺ wj ;
3 if texpi < texpj then return wi ⊀ wj and wj ⊀ wi;

4 if C2 not in BF then
5 if texpi ≤ texpj then return wj ≺ wi;
6 if texpi > texpj then return wi ⊀ wj and wj ⊀ wi;

7 if C2 = 1 then
8 if texpi > texpj then return wi ≺ wj ;
9 if texpi = texpj then return wi ⊀ wj and wj ⊀ wi;

10 if texpi < texpj then return wj ≺ wi;

and the big length |Prskymax| = 280. Hence, Prsky(wi) is a large
value ∈ {0, 1}280, and the method of building a bloom filter for
comparing small integers in phase CmpExp is computationally
expensive. As a result, we design a novel ElGamal-based
comparison approach for large values, which is introduced as
follows.

Step 1. S1 generates the skyline dominance relationships for
all pairs of workers in the current window, and then securely
sends the relationships to S2.

Step 2. S2 first selects a random number α ∈ Zp. Then,
based on Eq. (8), S2 calculates C3 and C4 for wi and wj ,
respectively. Finally S2 sends (C3, C4) to S1.

C3 = α · T ′i1 ·
∏

wk∈Wc
k 6=i,wk≺wi

T
′
k1 · 104Ni mod p,

C4 = α · T ′j1 ·
∏

wk∈Wc
k 6=j,wk≺wj

T
′
k1 · 104Nj mod p,

(8)

where Ni and Nj represent the number of workers who do
not dominate wi and wj , respectively.

Step 3. Upon receiving C3, S1 checks the dominance
relationships between wi and other workers and find all the
T
′
k2 for wk where wk ≺ wi. After that, S1 calculates C5 for

wi as:

C5 =
C3

(T ′i2 ·
∏

wk∈Wc
k 6=i,wk≺wi

T
′
k2)x

mod p

=

α · T ′i1 ·
∏

wk∈Wc
k 6=i,wk≺wi

T
′
k1 · 104Ni

(gri ·
∏

wk∈Wc
k 6=i,wk≺wi

gr̃k)x
mod p

=

α · Ti · yri ·
∏

wk∈Wc
k 6=i,wk≺wi

T k · yr̃k · 104Ni

(yri ·
∏

wk∈Wc
k 6=i,wk≺wi

yr̃k)
mod p

= α · (Ti ·
∏

wk∈Wc
k 6=i,wk≺wi

T k · 104Ni) mod p

= α · Prsky(wi) mod p (9)

Similarly, S1 calculates C6 for worker wj based on C4 as:

C6 =
C4

(T ′j2 ·
∏

wk∈Wc
k 6=j,wk≺wj

T
′
k2)x

mod p

= α · Prsky(wj) mod p

(10)

After that, S1 generates a random number β ∈ Zq , calcu-
lates C7 by Eq. (11), and then sends C7 to S2.

C7 = α ·β ·(C5−C6) = α ·β ·(Prsky(wi)−Prsky(wj)) mod p
(11)

Step 4. After obtaining C7, S2 calculates C8 as follows.

C8 =
C7

α
= β · (Prsky(wi)− Prsky(wj)) mod p (12)

Finally, S2 can determine the relation between Prsky(wi)
and Prsky(wj) based on the value and bit length of C8.
Specifically, if C8 = 0, then it means Prsky(wi) = Prsky(wi).
Otherwise, if |C8| < |p|

2 then Prsky(wi) > Prsky(wj); if
|C8| > |p|

2 then Prsky(wi) < Prsky(wj).
The correctness of the comparison is as follows. First,

given a non-negative integer β, it is easy to know that
when C8 = β · (Prsky(wi) − Prsky(wj)) mod p = 0, then
Prsky(wi) = Prsky(wi). Second, as both Prsky(wi) and
Prsky(wj) ∈ (0,Prskymax], we know that if Prsky(wi) >
Prsky(wj), then C8 ∈ (0, β · Prskymax). Therefore, |C8| <
|β| · |Prskymax| = 160 + 280 = 440 < |p|

2 = 512. Last, if
Prsky(wi) < Prsky(wj), then β · (Prsky(wi)− Prsky(wj)) < 0
and C8 = (p + β · (Prsky(wi) − Prsky(wj))) mod p. Here,
|C8| ∼ |p|, hence |C8| > |p|

2 .

E. The WrkSel Phase

After M starts, workers will continuously arrive at the
system. Particularly, Wc = {w1, w2, ..., wNwin} denotes the
Nwin workers in current sliding window, wn denotes the newly
arrived worker, (wi, wj) denotes any pair of workers in Wc,
Prsky(wi) and Prsky(wi)n denote wi’s probabilistic skyline
values before and after wn arrives, T [i][j] denotes the value
at the ith row and the jth column in T . The following steps
are performed by S1 and S2 for worker selection.

Step 1. Before wn arrives the platform, S1 and S2

will build a global worker selection table T based on
Algorithm 3 (an example is shown in Table III). There
are three values (i.e., 0, 1, -1) in T , which represents
Prsky(wi) = Prsky(wj),Prsky(wi) > Prsky(wj) and
Prsky(wi) < Prsky(wj), respectively.

Step 2. After wn arrives, the platform needs to update the
relations of probabilistic skyline among workers in Wc (i.e.,
to update the values of T [i][j]). A naive way is to update the
relations for all pairs of workers. However, it is inefficient by
involving many repetitive calculations. For the workers who
are not dominated by wn, their probabilistic skyline values
do not change and the comparisons between them should
be avoided. To address this issue, we propose an efficient
approach for updating T [i][j] based on the following cases.

Case 1. Both wi and wj are dominated by wn, (i.e., wn ≺ wi

and wn ≺ wj), denoted as wn ≺ (wi, wj).
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Algorithm 3: Generation of global worker selection
table T

Input : Wc = {w1, w2, ..., wNwin
}

Output: A two-dimensional array T that indicates the realtion of
workers’ probabilistic skyline values

1 Initialize T to an empty 2-dimensional array with the size of
(Nwin + 1)× (Nwin + 1);

2 for i = 1 to Nwin do
3 for j = 1 to Nwin do
4 if i = j then T [i][j] = 0;

// indicating Prsky(wi) = Prsky(wj)
5 else
6 S1 and S2 calculate C8 based on phase CmpSky
7 if C8 = 0 then T [i][j] = 0;

// indicating Prsky(wi) = Prsky(wj)

8 if C8 <
|p|
2

then T [i][j] = 1 & T [j][i] = −1;
// indicating Prsky(wi) > Prsky(wj)

9 if C8 >
|p|
2

then T [i][j] = −1 & T [j][i] = 1;
// indicating Prsky(wi) < Prsky(wj)

10 return The global worker selectiono table T

Theorem 1. If wn ≺ (wi, wj), the relation between Prsky(wi)
and Prsky(wj) does not change, so does the value of T [i][j].

Proof. Without loss of generality, we assume that Prsky(wi) >
Prsky(wj). Given wn ≺ (wi, wj), it is easy to obtain the
following equations based on Eq. (2):

Prsky(wi)n = Prsky(wi) · Tn, Prsky(wj)n = Prsky(wj) · Tn

(13)
Obviously after wn arrives, Prsky(wi)n > Prsky(wj)n due

to Prsky(wi) > Prsky(wj). Therefore, the relation between
Prsky(wi) and Prsky(wi) keeps the same, and the value of
T [i][j] does not need to update.

Case 2. In this case, wn does not dominate either wi or wj

(i.e., wn ⊀ wi and wn ⊀ wj), denoted as wn ⊀ (wi, wj).

Theorem 2. If wn ⊀ (wi, wj), the values of Prsky(wi) and
Prsky(wi) do not change, so does the value of T [i][j].

Proof. If wn ⊀ wi, then the subset of workers who dominate
wi stays the same, and the value of the following equation
Prsky(wi) = Ti ·Pr(wi) = Ti ·

∏
wk∈Wc,

i6=k,wk≺wi

T k ·
∏Ni

n=0 104 mod

p does not change. The same conclusion can be made for
wj . Therefore, the values of Prsky(wi) and Prsky(wi) do not
change, so does the value of T [i][j].

Case 3. In this case, wn ≺ wi, wn ⊀ wj and T [i][j] = −1
(i.e., Prsky(wi) < Prsky(wj)), denoted as wn ⊗ (wi, wj).

Theorem 3. If wn ⊗ (wi, wj), then the relation between
Prsky(wi) and Prsky(wi) does not change, so does the value
of T [i][j].

Proof. Based on the definition of probabilistic skyline, if wn⊗
(wi, wj), Prsky(wi)n and Prsky(wj)n can be calculated as:

Prsky(wi)n = Prsky(wi) · Tn, Prsky(wj)n = Prsky(wj) · 104

(14)
In this case, Prsky(wi) < Prsky(wj), and also Tn < 104,

then it is easy to have Prsky(wi)n < Prsky(wj)n. Therefore,

TABLE III
AN EXAMPLE OF GLOBAL WORKER SELECTION TABLE T

w1 w2 w3 w4 w5 wn

w1 0 -1 -1 -1 -1 -1
w2 1 0 1 -1 -1 -1
w3 1 -1 0 -1 -1 -1
w4 1 1 1 0 -1 1
w5 1 1 1 1 0 1
wn 1 1 1 -1 -1 0

the relation between Prsky(wi) and Prsky(wi) does not change,
so does the value of T [i][j].

Case 4. In this case, wn ≺ wi, wn ⊀ wj and T [i][j] = 1 (i.e.,
Prsky(wi) > Prsky(wj)), which is denoted as wn ⊕ (wi, wj).

Theorem 4. If wn ⊕ (wi, wj), then the relation between
Prsky(wi)n and Prsky(wj)n cannot be determined without
calculation. So S1 and S2 need to compare their relation based
on the method in Section IV-D, and update T [i][j] accordingly.

Proof. Similar to Case 3, given wn ⊕ (wi, wj), Prsky(wi)n
and Prsky(wj)n can still be calculated by Eq. (14). However,
only given Prsky(wi) > Prsky(wj) and Tn < 104, we cannot
determine the relation of Prsky(wi)n and Prsky(wj)n without
updating their real values.

In summary, after wn arrives the platform, S1 and S2 can
update the relation between Prsky(wi)n and Prsky(wj)n (i.e.,
the values of T [i][j]) according to the cases mentioned above.

Step 3. Next, S1 and S2 compare the relations of prob-
abilistic skyline values between wn and all the workers in
Wc, and then fill in T . For example, we assume Wc =
{w1, w2, w3, w4, w5}. If the ranking of probabilistic skyline
values for all the workers is w5 > w4 > wn > w2 > w3 > w1,
then after this step, T is shown in Table III. Finally, S2

can select the top-Nwin workers based on the values in T .
Specifically, S2 checks all the rows in T , and finds the row
which does not contain 1 (i.e., the first row in Table III). This
means that the worker in this row has the lowest probabilistic
skyline value among all the workers (i.e., w1 in this example).
At last, w1 will be removed from the platform, and the rest
of the workers are kept for fulfilling M.

V. SECURITY ANALYSIS

In this section, we will analyze the security properties of
the proposed scheme. Notably, following the design goals
illustrated in Section II-C, the analysis will focus on how our
scheme is privacy-preserving in protecting workers’ personal
information, i.e., working experience and trustability, from
being disclosed in the process of worker selection. Specifically,
let Wc = {w1, w2, .., wNwin

} denote the Nwin workers in the
current window and for ∀wi ∈ Wc, we have the following two
theorems.

Theorem 5. The worker wi’s working experience Ei cannot
be revealed during the whole process under the assumption
that S1 and S2 are honest-but-curious.
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Proof. We give the proof in four parts according to the
corresponding roles in our scheme, i.e., S1, S2, other workers
and outsiders.
• Under the assumption that S1 and S2 are honest-

but-curious, S1 can only obtain E ′i2 and many
(C1,(i,j), C2,(i,j))’s in our scheme, where i, j ∈ [1, Nwin]
and i 6= j. From the following equations

C1,(i,j) = g̃Ei−Ej · gr̄i−r̄j mod p,

C2,(i,j) = g̃Ei−Ej mod p, E ′i2 = gr̄i mod p,

we can see that C2,(i,j) comes from C1,(i,j), and the
information related to Ei in C2,(i,j) is not less than that
in C1,(i,j). Furthermore, C2,(i,j) is independent from E ′i2
that contains nothing related to Ei. Hence, we only need
to analyze whether S1 can obtain Ei from C2,(i,j)’s.
It is easy to see that S1 can obtain at most the following
Nwin − 1 independent equations regarding C2,(i,j)’s.

C2,(i,1) = g̃Ei−E1 mod p
...

C2,(i,i−1) = g̃Ei−Ei−1 mod p
C2,(i,i+1) = g̃Ei−Ei+1 mod p

...
C2,(i,Nwin) = g̃Ei−ENwin mod p

Without loss of generality, we assume that all the worker
experience values are different. Under the assumption that
S1 is honest-but-curious, S1 faces Nwin + 1 unknown
values in the above equations. Those Nwin + 1 unknown
values are (E1, E2, ..., ENwin

, g̃). Hence, even if Ei has a
small range, S1 cannot obtain any information about Ei
from the above equations. In other words, Ei is kept secret
from S1 in our scheme.

• Under the assumption that S1 and S2 are honest-but-
curious, S2 can only obtain E ′i1 that contains information
about Ei, where E ′i1 = g̃Ei · yr̄i mod p. However, S2 can-
not obtain Ei only from E ′i1 according to the correctness
and security of ElGamal encryption. Hence, Ei is kept
secret from S2 in our scheme.

• Regarding worker wj (i 6= j), he/she only knows whether
him/herself is chosen or not in our scheme. wj does not
even know which worker he/she is compared with. Hence,
wj has no idea about Ei in our scheme.

• Regarding the ones outside of our scheme, it is clear
that Ei is kept secret from them, since they obtain less
information than S1, S2 or workers in our scheme.

Theorem 6. The worker wi’s trustability Ti cannot be re-
vealed during the whole process under the assumption that
S1 and S2 are honest-but-curious.

Proof. Given Ti + T i = 104, in order to protect Ti from
being disclosed to other entities, our scheme also needs to
guarantee that T i is privacy-preserving in the whole process of
worker selection. Specifically, the following parts are provided
to prove the confidentiality of Ti to S1, S2, other workers, and
outsiders.

• In the proposed scheme, S1 keeps both T ′i2 and T
′
i2.

According to the correctness and security of the ElGamal
encryption, S1 can compute Ti or T i as long as S1

can also obtain T ′i1 or T
′
i1. Therefore, in order to prove

this theorem, we need to demonstrate that S1 cannot
obtain Ti, T i, T ′i1, and T

′
i1, respectively. The proofs are

presented as follows.
– Ti will not be revealed to S1. In our proposed

scheme, the views of S1 that related to Ti are many
(C5,(i,j), C7,(i,j))’s, such that

C5,(i,j) = α(i,j) · Ti · Ti mod p,

C7,(i,j) = α(i,j) · β(i,j) · (Ti · Ti − Tj · Tj) mod p,

where Ti is the continuous multiplication of T k’s and
104Ni mod p if there exists wk ∈ Wc and wk ≺ wi.
If no such worker exists (wi is a skyline worker),
then Ti = 104Ni mod p, i.e.,

Ti =

{∏
T k · 104Ni mod p ∃wk ∈ Wc, wk ≺ wi,

104Ni mod p otherwise.

Based on Eq. (11) in Section IV-D, we know
that C7,(i,j) is a linear combination of C5,(i,j) and
C6,(i,j), where C6,(i,j) = α(i,j) · β(i,j) · Tj · Tj ·
104Nj mod p. Since C6,(i,j) contains nothing about
Ti, so the information related to Ti in C7,(i,j) is not
more than that in C5,(i,j). Therefore, we only need
to analyze whether S1 can obtain Ti from C5,(i,j)’s
or not.
It is easy to know that S1 can get the following
Nwin − 1 equations for C5,(i,j)’s in the process of
worker selection.

C5,(i,1) = α(i,1) · Ti · Ti mod p
...

C5,(i,i−1) = α(i,i−1) · Ti · Ti mod p
C5,(i,i+1) = α(i,i+1) · Ti · Ti mod p

...
C5,(i,Nwin) = α(i,Nwin) · Ti · Ti mod p

If we consider Ti as a whole variable, then de-
pending on whether Ti = 104Ni mod p or not,
S1 faces at least Nwin and at most Nwin +
1 unknown values in the above Nwin − 1
equations. The definite Nwin unknown values
are (α(i,1), α(i,2), ..., α(i,i−1), α(i,i+1), ...α(i,n), Ti).
Therefore, S1 cannot directly solve the above equa-
tions, i.e., S1 cannot obtain any information about
Ti.

– T i will not be revealed to S1. LetWi
c denote a subset

of workers in Wc (i.e., Wi
c ∈ Wc) such that every

worker inWi
c is dominated by wi, so for ∀wk′ ∈ Wi

c,
we have wi ≺ wk′ . If no such worker exists, then
Wi

c = ∅.
It is worth noting that if Wi

c = ∅, then S1 can get
nothing related to T i. Without lossing of generality,
we assume that Wi

c 6= ∅, and there is at least one
worker wk′ in Wi

c. Accordingly, in our proposed
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scheme, the views of S1 related to T i are many
(C5,(k′,j), C7,(k′,j))’s for k′ 6= j, such that

C5,(k′,j) = α(k′,j) · Tk′ · T i · Tk′/i mod p,

C7,(k′,j) = α(k′,j) · β(k′,j) · (Tk′ · T i · Tk′/i

− Tj · Tj) mod p,

where

Tk′/i =


∏
T k · 104Nk′ mod p ∃wk ∈ Wc,

wk ≺ wk′ , k 6= i,

104Nk′ mod p otherwise.

Similarly, the information that related to T i in
C7,(k′,j) is not more than that in C5,(k′,j), so in the
next, we only need to analyze whether S1 can obtain
T i from C5,(k′,j)’s or not.
It is easy to know that S1 can get at most the
following Nwin − 1 equations regarding C5,(k′,j)’s
in our proposed scheme.

C5,(k′,1) = α(k′,1) · Tk′ · T i · Tk′/i mod p
...

C5,(k′,k′−1) = α(k′,k′−1) · Tk′ · T i · Tk′/i mod p
C5,(k′,k′+1) = α(k′,k′+1) · Tk′ · T i · Tk′/i mod p

...
C5,(k′,Nwin) = α(k′,Nwin) · Tk′ · T i · Tk′/i mod p

Again, let consider Tk′/i as a whole variable. It
is easy to see that S1 faces at least Nwin + 1
and at most Nwin + 2 unknown values, depending
on whether Tk′/i = 104Nk′ mod p or not.
The Nwin + 1 definite unknown values are
(α(k′,1), ..., α(k′,k′−1), α(k′,k′+1), ..., α(k′,Nwin), Tk′ , T i).
Accordingly, S1 cannot obtain any information about
T i from the above equations.

– T ′i1 will not be revealed to S1. In the proposed
scheme, the views of S1 that related to T ′i1 are many
C3,(i,j)’s, such that

C3,(i,j) = α(i,j) · T ′i1 · T
′
i1 mod p,

where T′i1 is the continuous multiplication of T
′
k1’s

and 104Ni mod p if there exists wk ∈ Wc such that
wk ≺ wi. If no such worker exists (wi is a skyline
worker), then T′i1 = 104Ni mod p, i.e.,

T′i1 =

{∏
T
′
k1 · 104Ni mod p ∃wk ∈ Wc, wk ≺ wi,

104Ni mod p otherwise.

In the proposed scheme, S1 can get at most the
following Nwin− 1 equations regarding C3,(i,j)’s in
our proposed scheme.

C3,(i,1) = α(i,1) · T ′i1 · T
′
i1 mod p

...
C3,(i,i−1) = α(i,i−1) · T ′i1 · T

′
i1 mod p

C3,(i,i+1) = α(i,i+1) · T ′i1 · T
′
i1 mod p

...
C3,(i,Nwin) = α(i,Nwin) · T ′i1 · T

′
i1 mod p

Similarly, S1 will face at least Nwin and at most
Nwin + 1 unknown values in the above Nwin − 1
equations. The definite Nwin unknown values
are (α(i,1), ..., α(i,i−1), α(i,i+1), ..., α(i,Nwin), T

′
i1).

Therefore, S1 cannot compute T ′i1. Without T ′i1,
based on the correctness and security of ElGalmal
encryption, S1 cannot obtain Ti in the designed
scheme.

– T
′
i1 will not be revealed to S1. In the proposed

scheme, the view of S1 that related to T
′
i1 are many

C3,(k′,j), such that

C3,(k′,j) = α(k′,j) · T ′k′1 · T
′
i1 · T

′
k′1/i mod p,

where T′k′1/i is the continuous multiplication of
T
′
k1’s and 104Nk′ mod p if there exists wk ∈ Wc

(k 6= i) such that wk ≺ w′k. If no such worker
exists (i.e., wk′ is only dominated by wi), then
T′k′1/i = 104Nk′ mod p, i.e.,

T′k′1/i =


∏
T
′
k1 · 104Ni mod p ∃wk ∈ Wc,

wk ≺ wk′ , k 6= i,

104Nk′ mod p otherwise.

Again, S1 can get the following Nwin− 1 equations
regarding C3,(k′,j)’s at most in our scheme.

C3,(k′,1) = α(k′,1) · T ′k′1 · T
′
i1 · T

′
k′1/i mod p

...
C3,(k′,k′−1) = α(k′,k′−1) · T ′k′1 · T

′
i1 · T

′
k′1/i mod p

C3,(k′,k′+1) = α(k′,k′+1) · T ′k′1 · T
′
i1 · T

′
k′1/i mod p

...
C3,(k′,Nwin) = α(k′,Nwin) · T ′k′1 · T

′
i1 · T

′
k′1/i mod p

Let consider T′k′1/i as a whole variable, then it
is easy to know that S1 faces at least Nwin + 1
unknown variables from the above Nwin − 1
equations. The definite Nwin + 1 variables are
(α(k′,1), ..., α(k′,k′−1), α(k′,k′+1), ..., α(k′,Nwin), T

′
k′1, T

′
i1).

Similar with the previous discussions, S1 has no
idea about T

′
i1, so S1 cannot compute T i based on

ElGamal encryption.
In summary, we have proved that S1 can obtain
neither Ti, T i, T ′i1, nor T

′
i1 in the proposed scheme.

Therefore, the real value of Ti for any worker
wi ∈ Wc will not be revealed to S1 in the process
of worker selection.

• In the proposed scheme, S2 keeps T ′i1, T
′
i1, and many

(C3,(i,j), C7,(i,j))’s. Based on the correctness and security
of ElGamal encryption, S2 cannot compute Ti or T i with
only knowing T ′i1 or T

′
i1. In addition, C3,(i,j) is computed

by T ′i1 and T
′
k1’s for wk ≺ wi. So the information related

to Ti or T i in C3,(i,j) is no more than that in T ′i1 and
T
′
i1. Therefore, S2 cannot obtain Ti or T i from either T ′i1,

T
′
i1, or C3,(i,j). In the next, we will demonstrate why S2

cannot get access to Ti and T i from C7,(i,j)’s.
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It is easy to see that S2 can obtain the following Nwin−1
equations regarding about C7,(i,j).

C7,(i,1) = α(i,1) · β(i,1) · (Ti · Ti − Tj · Tj) mod p
...

C7,(i,i−1) = α(i,i−1) · β(i,i−1) · (Ti · Ti

− Tj · Tj) mod p
C7,(i,i+1) = α(i,i+1) · β(i,i+1) · (Ti · Ti

− Tj · Tj) mod p
...

C7,(i,Nwin) = α(i,Nwin) · β(i,Nwin) · (Ti · Ti

− Tj · Tj) mod p

Finally, S2 will face at least Nwin + 1 unknown
values from the above Nwin − 1 equations, i.e.,
(β(i,1), ..., β(i,i−1), β(i,i+1), ..., β(i,Nwin), Ti, Tj). There-
fore, S2 cannot obtain Ti from C7,(i,j)’s. In summary,
Ti is privacy-preserving for S2 in the whole process of
worker selection.

• Same as Theorem 5, it is easy to prove that neither other
workers nor outsiders can obtain the information about
Ti in our designed scheme.

VI. PERFORMANCE EVALUATION

In this section, we first study the performance of our pro-
posed scheme in terms of storage overhead and computational
overhead. Then, we provide a detailed description of our
experimental configuration and comparison results.

A. Theoretical Analysis

• Storage Overheads: Assume there are totally N workers
registered in the MCS system, then in the SysPre phase,
for each worker wi, S1 needs to keep T ′i2, T

′
i2; S2 needs to

store T ′i1, T
′
i1. After M starts, participating workers need to

outsource E ′i2 and E ′i1 to S1 and S2, respectively. In summary,
for both S1 and S2, the storage overheads in the process of
worker selection can be computed as

∑N
1 2|p|+

∑Nwin+1
1 |p|,

where |p| (e.g., 1024) is the bit-length of large prime p
generated in Section IV-A and Nwin is window size.
• Computational Overheads: The computational costs for

CmpExp phase can be calculated as (Nwin+1)(Nwin+2)
2 · tsky ,

where tsky is the time cost for determining the skyline domi-
nance relationship between each pair of workers. For a newly
formed window with Nwin + 1 workers, the computational
costs for WrkSel phase can be calculated as Nwin · twi,wj

,
where twi,wj is the time cost for comparing Prsky(wi) and
Prsky(wj) in phase CmpSky. Therefore, the overall computa-
tional costs for worker selection is (Nwin+1)(Nwin+2)

2 · tsky +
Nwin · twi,wj

.

B. Dataset, Experimental Settings, and the Baseline Method

• Real-world Dataset: The real-world dataset used in our
experiment is Reality Mining Data [20]. This dataset tracks
the mobile communication information of ninety-four people
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Fig. 3. The execution time (s) of the proposed worker selection scheme for
different datasets with window size Nwin varies from 5 to 20 (the commu-
nication costs between two cloud servers S1 and S2 are not considered).

in the Massachusetts Institute of Technology from Septem-
ber 2004 to June 2005. After removing all the logs with
none communication time duration, we finally extract 111,586
smartphone logs. For each log record, the time of picking
up the phone represents the start time, the time duration
of the communication means the life-span of the worker’s
sensing data. Moreover, for each worker wi, we randomly
assign Ei ∈ [1, 30] as working experience and Ti ∈ (0, 1) as
trustability, where both Ei and Ti follow uniform distribution.
• Synthetic Datasets: In the experiment, we also generate

two different kinds of synthetic datasets (independent and
anti-correlated) based on [14], both their sizes are 100k.
For the independent data, each worker wi’s Ei ∈ [1, 30],
tlsi ∈ [1s, 100s] and Ti ∈ (0, 1) are generated independently
using uniform distributions. For the anti-correlated data, we
first uniformly generate a random probability Ti ∈ (0, 1) as
workers’ trustability. Then, we assume that if a worker has
higher Ei for a certain task M, she/he tends to take shorter
time to finish M, i.e., smaller tlsi . Hence, Ei and tlsi are
generated using the method in [14] such that they are anti-
correlated with each other. For both simulated datasets, we
randomly assign an order for workers’ arrival in a data stream.
• Experimental settings and the baseline method: First,

we need to decide the key sizes of the proposed encryption
methods, i.e., the bit length of p and q. As we mentioned
before, our proposed schemes are original from ElGamal
encryption, whose chosen-plaintext attack security is based
on the decisional Diffie-Hellman (DDH) assumption [21].
According to [22]–[24], when the bit lengths of p and q are
set as 1024 and 160, the DDH assumtion holds. As a result,
we set |p| = 1024 and |q| = 160 in this paper.

Next, we need to decide the experimental parameters for
the MCS tasks. The window size Nwin varies from 5, 10,
15, to 20, which means that our worker selection scheme
will lanuch when Nwin + 1 (i.e., 6, 11, 16, and 21) workers
are in the system. We also proposed a baseline method for
comparison purposes. More specifically, when a new worker
arrives in the system, the baseline method discards the worker
who has the earliest expiry time texpi and keeps the rest of the
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workers for conducting the task. We perform the experiments
with Python programming language on an Intel(R) Core(TM)
i7-6700 CPU @3.60GHz Windows 64-bit Operating System
with 32 GB RAM. We repeated each experiment 10000 times,
and the average results are reported.

C. Experimental Results

• The computational cost for worker selection in each
sliding window: It is noteworthy that our proposed scheme
requires constant interactions between S1 and S2. However,
the communication time cost between them is hard to be
simulated. So we ignored the communication cost in our
experiment. From Fig. 3, we observe that i) for each sliding
window, the running time for worker selection can be finished
fast (from 0.5ms to 6.5ms), which validates the efficiency and
feasibility of our selection scheme. ii) The running time for
worker selection is proportional to Nwin, which equals to
(Nwin+1)(Nwin+2)

2 · tsky + Nwin · twi,wj
. As a result, more

workers in the current sliding window, the longer time it
will take for selecting workers. iii) The computational cost
is similar among different datasets. In the experiment, we
simulate worker’s Ei and Ti in each dataset. Essentially, the
computational costs for securely comparing working experi-
ence in phase CmpExp and probabilistic skyline values in
phase CmpSky account for a substantial part of the overall
time costs in worker selection, which leads to the result that
all the datasets have a similar running time when Nwin is
confirmed.
• Two scenarios for performance evaluation: For both the

baseline and our proposed scheme, the following two real-
world scenarios are deployed on all the datasets, i.e., scenario
1: workers continuously arrive at the system and scenario 2:
workers continuously leave the system.

In scenario 1, with the successive arrival of the workers, the
proposed worker selection scheme is maintained constantly to
choose the top-Nwin workers among the Nwin +1 candidates.
The sum of probabilistic worker experience SE =

∑Nwin

i=1 (Ti×
Ei) is used as the evaluation metric in this scenario. SE can
be used to represent workers’ overall quality in each sliding
window, so it is a good indicator for the reliability of the
proposed scheme. SE is calculated for the selected Nwin

workers, and will be updated after a new worker arrives.
In scenario 2, for each current window, we assume that no

worker arrives at the system anymore, and each worker leaves
the MCS platform after they reach their expiry time. More
specifically, for each worker wi in the system, the following
two variables are calculated: i) trexpi = texpi − texpmin which
means wi’s relative departure time, where texpmin is the earliest
expiry time in current window, and ii) SrE = SE − Ei which
means the sum of probabilistic worker experience after wi

leaves the system. Consequently, scenario 2 provides a useful
circumstance for us to identify the overall sustainability and
reliability of the system in terms of working experience and
persevering duration when no worker arrives.
• Experimental results for scenario 1: Fig. 4 shows the

experimental results for scenario 1. First of all, it is obvious
that our proposed scheme performs better than the baseline

method on selecting workers with more working experience.
Specifically, SE of our approach is larger than the baseline
method for almost all the cases. This result indicates that given
the same Nwin, our scheme can keep each sliding window
more reliable by maintaining workers with more experience.
There even exists some cases such that the SE of our proposed
method when Nwin = 15 is larger than baseline method when
Nwin = 20 (e.g., Fig. 4 (a) and (b)). Second, we can see
that there is an exceptional example in Fig. 4 (c), where
two methods are nearly indistinguishable for anti-correlated
dataset when Nwin = 5. Under the anti-correlated situation, a
worker with more working experience tends to have a shorter
life-span of the sensing data, and vice versa. This property
leads to a result that when Nwin is small (e.g. equals 5), the
workers are more likely not to be dominated by each other.
Thus, their Prsky(wi) tends to not be affected by the newly
arrived worker (e.g., the case 2 in the WrkSel phase). So the
workers may just be selected only by their expiry time. As a
result, our proposed scheme shows a similar statistical pattern
with the baseline. Third, as Nwin increases, the differences of
SE between our scheme and baseline increase simultaneously.
Consequently, it is important to define a sufficiently large
Nwin for better distinguishing our scheme with baseline in
real-world MCS applications.
• Experimental results for scenario 2: Fig. 5 to Fig. 7 show

the comparison results of scenario 2 with Nwin varies from
5 to 20. Intuitively, our proposed worker selection scheme is
superior to the baseline method for all the cases in terms of
trexpi and SrE . This indicates that given the same Nwin, our
approach can provide better and longer services than baseline.
Specifically, once a worker reaches the expiry time and leaves
the platform, the rest of the workers in our system have more
working experience than those in baseline method. In addition,
the workers in our proposed selection scheme can stay 30s
∼ 200s longer than baseline workers under different Nwin.
Therefore, when no worker arrives anymore, the workers
selected by our scheme can maintain the platform better and
longer, which is significant for certain MCS services such
as traffic jam/accident monitoring. This observation further
validates our proposed scheme’s reliability and sustainability
in a special case, where the platform’s durability plays a
fundamental role in service quality.

VII. RELATED WORK

Recently, there have been numerous endeavors that aim to
study the problem of worker selection in MCS platforms. In
this section, we briefly review some of the typical works in
this area.

Jin et al. [11] proposed a privacy-preserving framework for
MCS worker selection based on a novel incentive mechanism.
Specifically, their framework can compensate workers’ costs
for both sensing leakage and privacy leakage while selecting
workers who are more likely to provide reliable sensing
data. Moreover, they integrated their framework with data
perturbation and aggregation technologies, ensuring highly
accurate aggregated results and guarantees workers’ privacy.
Zhang et al. [9] proposed a probabilistic skyline based worker
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(a) Real dataset: Comparison of workers’ quality
between our method and baseline based on SE with
window size Nwin varies from 5 to 20.
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(b) Independent dataset: Comparison of workers’
quality between our method and baseline based on
SE with window size Nwin varies from 5 to 20.
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(c) Anti-correlated dataset: Comparison of work-
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20.

Fig. 4. Comparison and evaluation of workers’ quality between our method and baseline method for different datasets with varied window size Nwin from
5, 10, 15 to 20.
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(a) Sum of probabilistic worker ex-
perience Sr

E vs. relative departure
time trexpi with Nwin = 5.

0 100 200 300 400 500

Relative departure time (s)

0

10

20

30

40

50

60

70

S
u

m
 o

f 
p

ro
b

a
b

ili
s
ti
c
 e

x
p

e
ri
e

n
c
e

Our method

Baseline

(b) Sum of probabilistic worker ex-
perience Sr

E vs. relative departure
time trexpi with Nwin = 10.
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(c) Sum of probabilistic worker ex-
perience Sr

E vs. relative departure
time trexpi with Nwin = 15.
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perience Sr

E vs. relative departure
time trexpi with Nwin = 20.

Fig. 5. Real dataset: The sum of probabilistic worker experience Sr
E vs. relative departure time trexpi with varied window size Nwin = 5, 10, 15 and 20,

i.e., for a given window size Nwin, Sr
E = SE − Ei is measured after a worker wi leaves the system at trexpi .
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(a) Sum of probabilistic worker ex-
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E vs. relative departure
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(b) Sum of probabilistic worker ex-
perience Sr

E vs. relative departure
time trexpi with Nwin = 10.
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(c) Sum of probabilistic worker ex-
perience Sr

E vs. relative departure
time trexpi with Nwin = 15.
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perience Sr

E vs. relative departure
time trexpi with Nwin = 20.

Fig. 6. Independent dataset: The sum of probabilistic worker experience Sr
E vs. relative departure time trexpi with varied window size Nwin = 5, 10, 15

and 20, i.e., for a given window size Nwin, Sr
E = SE − Ei is measured after a worker wi leaves the system at trexpi .

selection method, which solved a fundamental problem of
calculating workers’ trustability based on their historical re-
views. In addition, they designed a non-interactive encrypted
integer comparison protocol to compare the skyline domi-
nance relationship between workers securely. Skyline operator
is used for selecting workers based on ask price and task
relativity. This is the first work using a skyline-based method
for worker selection in MCS platforms, which can consider
the trade-off between multiple aspects and select workers
that are not dominated by others. Gong et al. [25] devised
truthful crowdsensing mechanisms for incentivizing strategic
workers to truthfully reveal their private quality and truthfully
make efforts as desired by the requester. In their work, the
authors assumed that a strategic worker with low quality
may pretend to have a high quality to receive a high reward

from the requester. Under the proposed mechanisms, they
showed that the requester can assign the task only to the best
workers that has the smallest virtual valuation. However, in
our work, by introducing a performance feedback mechanism
for calculating trustability, the workers need to submit the real-
time information and sensing data as accurate as possible. Ren
et al. [26] introduced a socially aware reputation management
scheme for selecting well-suited participants and allocating the
task rewards in MCS services. Concretely, social attributes,
task delays, and reputation are focused under a fixed task
budget. Moreover, a rewarding scheme is devised to measure
the quality of the sensing reports and allocate reliable workers
to certain MCS tasks under the consideration of the trustwor-
thiness and cost performance of task participants. Ni et al. [27]
described a privacy-preserving MCS framework for location-
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time trexpi with Nwin = 10.
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(c) Sum of probabilistic worker ex-
perience Sr

E vs. relative departure
time trexpi with Nwin = 15.
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(d) Sum of probabilistic worker ex-
perience Sr

E vs. relative departure
time trexpi with Nwin = 20.

Fig. 7. Anti-correlated dataset: The sum of probabilistic worker experience Sr
E vs. relative departure time trexpi with varied window size Nwin = 5, 10, 15

and 20, i.e., for a given window size Nwin, Sr
E = SE − Ei is measured after a worker wi leaves the system at trexpi .

based applications, which can balance the trade-off between
privacy preservation and task allocation. A matrix-based lo-
cation matching mechanism is used by the service provider
to achieve location-based task allocation without disclosing
workers’ sensing location. Proxy re-encryption technology is
developed to enhance privacy preservation during the MCS
services. Jin et al. [28] proposed a differentially private incen-
tive mechanism that preserves the privacy of each worker’s
bid, which is based on the single-minded reverse combinatorial
auction. However, in this work, we select workers based
on working experience, expiry time, and trustability, without
considering workers’ asking price information. Liu et al. [29]
studied the problem of multi-task allocation in MCS services.
For particular, two typical multi-task MCS environments are
considered in their work, e.g., FPMT (few participants with
more tasks) and MPFT (more participants with few tasks).
Unique mechanisms are devised for different scenarios with
different optimization goals. Wang et al. [13] proposed a
location privacy-preserving worker selection framework with
geo-obfuscation for protecting workers’ locations during task
allocation. More specifically, by obfuscating their real loca-
tions under the guarantee of differential privacy, workers can
protect their location privacy regardless of adversaries’ prior
knowledge. In addition, a mixed-integer non-linear program-
ming problem is defined for minimizing workers’ expected
travel distance and optimizing worker assignments. Wu et al.
[30] proposed a context-aware multi-armed bandit incentive
method for selecting high-quality workers in MCS systems.
In their work, workers’ service quality is evaluated by their
context and cost. Then, by accurately assessing workers’
quality information, a modified Thompson sampling approach
is utilized for selecting reliable workers based on reinforce-
ment learning. Sun et al. [31] studied the problem of truth
discovery in crowdsourced question answering system based
on a contract-based privacy-preserving incentive mechanism,
whereas the scope of this work is reliable and continuous
worker selection in MCS.

In summary, most of the previous works treat the MCS
task as a one-time service. They allocate tasks to suitable
workers by measuring their personal qualification, location,
and trustability in particular sensing environment (e.g., multi-
task allocation), without considering a dynamic situation such
that workers may continuously arrive or leave the system. Fur-

thermore, little systematic and data-driven evidence has been
published for a typical real-world case in which the MCS task
should be constantly maintained for a long time. Unlike the
above, our work focuses on privacy-preserving and continuous
worker selection for MCS platforms. Our proposed scheme can
dynamically select reliable workers while guarantee privacy
preservation of their sensitive information.

VIII. CONCLUSION

In this work, we have proposed a privacy-preserving worker
selection scheme for MCS based on probabilistic skyline query
over sliding windows. The proposed scheme can continuously
select reliable workers in terms of working experience, expiry
time, and trustability without revealing sensitive information.
More specifically, a probabilistic skyline approach is designed
for a dynamic situation where workers may constantly arrive
at/leave the platform. For protecting workers’ privacy, we have
designed an ElGamal-based encryption approach for securely
outsourcing sensitive information and comparing workers’
personal information. Security analysis demonstrates that the
proposed scheme is privacy-preserving. Extensive experiments
have been conducted on both real-world and simulated datasets
for two scenarios: i) continuous worker arrival and ii) contin-
uous worker departure. The comparison results validate the
efficiency and effectiveness of our proposed worker selection
scheme. For future work, the group skyline technique will be
studied to enhance the performance of the current system.
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